群論の基本

群論の基本

生成される部分群の考え方を具体例から解説|巡回群も紹介

群(G,・)に対し,いくつかのg₁,g₂,……,gₙ∈Gとそれらの逆元を演算してできるGの元全部の集合は群(G,・)の部分群になり,この群を{g₁,g₂,……,gₙ}により生成される部分群といい,〈g₁,g₂,……,gₙ〉と表します.
群論の基本

部分群の定義・具体例|部分群であることの証明テンプレも紹介

部分群とは,もとの群の集合の空でない部分集合で,もとの群と同じ演算で閉じていて,群となっているもののことを言います.この記事では部分群の定義・具体例・性質を解説し,部分群であることの証明のテンプレートも説明します.
群論の基本

群の定義・考え方を具体例から解説|群論は集合と演算の分野

群を扱う群論は代数学の基礎となる分野のひとつ分野です.群は3つの性質[結合法則][単位元の存在][逆元の存在]を満たす集合と演算のことをいいます.この記事では群の定義と具体例を解説します.
記事が良かった方は是非シェアを!
タイトルとURLをコピーしました