線形空間の基本線形結合・線形独立性の定義と例題|ベクトルたちの線形関係 ベクトルv₁,v₂,……,vₙたちのスカラー倍と和で表されるベクトルを線形結合と言います.また,v₁,v₂,……,vₙの線形結合で零ベクトルを作るために係数を全て0にするしかないとき,v₁,v₂,……,vₙは線形独立であると言います.2023.05.01線形空間の基本
線形空間の基本線形部分空間の定義|証明のテンプレートも例題に沿って紹介 線形空間Vの部分集合UがVの和とスカラー倍について閉じているとき,UをVの線形部分空間といいます.この記事では線形部分空間の定義と証明のテンプレートを紹介し,基本性質を証明します2023.04.06線形空間の基本
線形空間の基本線形空間(ベクトル空間)の定義|多項式・数列の例も紹介 集合ℝ²上の和とスカラー倍は,交換法則や分配法則などの「よい性質」を満たします.ℝ²以外の集合上でも「よい性質」をもつ和とスカラー倍を備えた空間を「線形空間」といい,ℝ²と同様に扱うことができます.2023.04.01線形空間の基本