常微分方程式

常微分方程式

ピカール-リンデレフの定理|常微分方程式の解の一意存在性

常微分方程式の初期値問題の解の存在と一意性に関する重要定理としてピカール-リンデレフの定理があります.この記事では,ピカール-リンデレフの定理がどのような定理かを説明し,この定理を証明します.
常微分方程式

解が一意でない常微分方程式の具体例|なぜ解が複数存在するのか

「微分方程式に解が存在するか?解が存在すれば一意か?」を考えることはよくあり,解の存在定理はいくつも知られています.この記事では,基本的な解の存在定理を踏まえて解が一意ではない微分方程式の具体例を紹介します.
常微分方程式

ピカールの逐次近似法|常微分方程式の解を構成する方法

常微分方程式の解き方は様々なパターンで考えられていますが,常微分方程式がよく知られた形をしていない場合にも,「ピカールの逐次近似法」を用いて解が得られる場合があります.この記事では,具体例からピカールの逐次近似法を説明します.
記事が良かった方は是非シェアを!
タイトルとURLをコピーしました