微分方程式

偏微分方程式

ストリッカーツ評価|シュレディンガー方程式の分散性評価

シュレディンガー方程式を考える上では,基本解に関する積分作用素の有界性を与える[ストリッカーツ評価]は非常に重要です.[ストリッカーツ評価]は[LpLq評価]を用いることで導出することができます.
偏微分方程式

シュレディンガー方程式の分散性|基本解のLpLq評価の導出

シュレディンガー方程式の基本解に関してLpLq評価という基本的な不等式があります.LpLq評価はシュレディンガー方程式を考える上で重要なストリッカーツ評価のベースとなります.
偏微分方程式

線形シュレディンガー方程式|基本解と解作用素のユニタリ群

非線形項が0のシュレディンガー方程式の初期値問題の解は,自由シュレディンガー発展作用素によって表される.この記事では,自由シュレディンガー発展作用素の基本性質として,LpLqノルムの評価式を導出する