解析学

微分方程式

1次元線形熱方程式の変数分離解をフーリエ級数を用いて導出

線形熱方程式の初期値・境界値問題では,解がフーリエ級数展開を用いて表せる場合が多くあります.この記事では,形式的に解の形を導出したのち,その形式的な解が厳密解であることを証明します.
測度論

極限と級数が順序交換であるための条件|微分と級数の交換も解説

関数列{fₙ}の級数Σfₙについて,極限limや微分d/dxを計算するとき,Σとlimの順序交換,Σとd/dxの順序交換ができると簡単に計算が進むことはよくあります.この記事では,これらが交換可能であるための条件を解説します.
ルベーグ積分の基本

微分と積分が順序交換可能な条件|ルベーグの収束定理の応用

2変数関数fに対してF(t)=∫f(x,t)dxで定まる関数Fを微分するとき,微分と積分の順序交換をしたいことがよくあります.ルベーグの収束定理を用いることで,微分と積分の順序交換ができるための条件を導くことができます.
複素解析

フレネル積分を複素積分で計算する|cos(x²),sin(x²)の広義積分

0≦xでのcos(x²), sin(x²)の広義リーマン積分を「フレネル積分」といいます.フレネル積分は複素積分に持ち込み,コーシーの積分定理を用いることにより計算することができます.また,一般化したcos(xⁿ), sin(xⁿ)の広義リーマン積分も計算しています.
ルベーグ空間

ルベーグ空間(Lᵖ空間)|ルベーグ積分に関するノルム・内積

測度空間Xに対して,Xでp乗可積分な関数の(商)空間をLᵖ(X)と表します.この記事ではLᵖ(X)の正確な定義を説明し,LᵖノルムによってLᵖ(X)がノルム空間・内積空間となることを解説します.
ルベーグ空間

ミンコフスキーの不等式と証明|便利な積分形も併せて紹介

ルベーグ積分(測度論)を扱う分野では「ミンコフスキーの不等式」がよく用いられます.この記事では,和のミンコフスキーの不等式と併せて,積分形のミンコフスキーの不等式も紹介します.
ルベーグ空間

ヘルダーの不等式の証明・応用|ルベーグ積分の基本不等式

ルベーグ積分(測度論)を扱う分野では「ヘルダーの不等式」は基本的な不等式のひとつとして重要です.この記事では,ヘルダーの不等式の証明と,ヘルダーの不等式の応用(双対性)を説明します.
ルベーグ空間

本質的有界な関数のルベーグ空間L^∞|ノルム空間として定義

(適切な同一視のもとで)本質的有界な可測関数全部の集合L^∞はバナッハ空間(完備なノルム空間)となります.この空間L^∞を「ルベーグ空間」と言います.
ルベーグ空間

本質的有界な可測関数|本質的上限(ess sup)・下限(ess inf)

関数の上限は1点の値を変えることでどこまでも大きくすることができますが,そのような上限は本質的な上限とは言い難いですね.この記事では本質的上限と本質的下限の定義・具体例・性質を説明します.
複素解析

ディリクレ積分を複素積分で計算する|sin(x)/xの広義積分

0≦xでのsin(x)/xの広義リーマン積分を「ディリクレ積分」といいます.この記事では,ディリクレ積分を複素積分に持ち込み,コーシーの積分定理を用いることにより,ディリクレ積分がπ/2に収束することを示します.
記事が良かった方は是非シェアを!
タイトルとURLをコピーしました