ルベーグ空間

ルベーグ空間(Lᵖ空間)|ルベーグ積分に関するノルム・内積

測度空間Xに対して,Xでp乗可積分な関数の(商)空間をLᵖ(X)と表します.この記事ではLᵖ(X)の正確な定義を説明し,LᵖノルムによってLᵖ(X)がノルム空間・内積空間となることを解説します.
ルベーグ空間

ミンコフスキーの不等式と証明|便利な積分形も併せて紹介

ルベーグ積分(測度論)を扱う分野では「ミンコフスキーの不等式」がよく用いられます.この記事では,和のミンコフスキーの不等式と併せて,積分形のミンコフスキーの不等式も紹介します.
ルベーグ空間

ヘルダーの不等式の証明・応用|ルベーグ積分の基本不等式

ルベーグ積分(測度論)を扱う分野では「ヘルダーの不等式」は基本的な不等式のひとつとして重要です.この記事では,ヘルダーの不等式の証明と,ヘルダーの不等式の応用(双対性)を説明します.
ルベーグ空間

本質的有界な関数のルベーグ空間L^∞|ノルム空間として定義

(適切な同一視のもとで)本質的有界な可測関数全部の集合L^∞はバナッハ空間(完備なノルム空間)となります.この空間L^∞を「ルベーグ空間」と言います.
ルベーグ空間

本質的有界な可測関数|本質的上限(ess sup)・下限(ess inf)

関数の上限は1点の値を変えることでどこまでも大きくすることができますが,そのような上限は本質的な上限とは言い難いですね.この記事では本質的上限と本質的下限の定義・具体例・性質を説明します.
記事が良かった方は是非シェアを!
タイトルとURLをコピーしました