山本 拓人

群論の基本

群の定義・考え方を具体例から解説|群論は集合と演算の分野

群を扱う群論は代数学の基礎となる分野のひとつ分野です.群は3つの性質[結合法則][単位元の存在][逆元の存在]を満たす集合と演算のことをいいます.この記事では群の定義と具体例を解説します.
線形空間の基本

線形空間(ベクトル空間)の定義|多項式・数列の例も紹介

集合ℝ²上の和とスカラー倍は,交換法則や分配法則などの「よい性質」を満たします.ℝ²以外の集合上でも「よい性質」をもつ和とスカラー倍を備えた空間を「線形空間」といい,ℝ²と同様に扱うことができます.
複素解析

ディリクレ積分を複素積分で計算|sin(x)/xの広義積分

0≦xでのsin(x)/xの広義リーマン積分を「ディリクレ積分」といいます.この記事では,ディリクレ積分を複素積分に持ち込み,コーシーの積分定理を用いることにより,ディリクレ積分がπ/2に収束することを示します.
ルベーグ積分

ルベーグ非可測集合の具体例|「ヴィタリ集合」の定義と存在

ルベーグ可測集合はルベーグ積分においてベースとなる集合たちで,多くのℝの部分集合はルベーグ可測集合ですが,選択公理を仮定することでルベーグ可測集合でない集合の存在を証明することができます.
ルベーグ積分の基本

ルベーグ積分はリーマン積分の拡張|証明と計算の例題を解説

有界閉区間上の有界関数fがリーマン積分可能なら,fはルベーグ積分可能であり,リーマン積分とルベーグ積分が等しいことが証明できます.また,有界閉区間上でない積分にも応用できることがあります.
ルベーグ積分の基本

ルベーグの収束定理を例題から理解する|証明・考え方を解説

ルベーグ積分は極限と相性が良く,その中でもひときわ便利な重要な定理に「ルベーグの収束定理」があります.ルベーグの収束定理はルベーグ積分における重要な項別積分定理です.
ルベーグ積分の基本

ファトゥの補題の使い方を例題から解説|ルベーグ積分と下極限

下極限とルベーグ積分の交換に関する定理として「ファトゥの補題」があります.ファトゥの補題は極限の発散の証明に便利であったり,ルベーグの収束定理を証明する際に鍵となる定理です.
ルベーグ積分の基本

ルベーグの単調収束定理の例題と証明|ルベーグ積分の重要定理

可測集合A上の広義単調増加する非負値可測単関数列{fₙ}が各点収束するとき,{fₙ}はA上で項別積分可能です.この記事では,この「単関数列の項別積分定理」の考え方・応用・証明を解説します.
ルベーグ積分の基本

単関数列の項別積分定理|直感的な考え方・応用・証明を解説

可測集合A上の広義単調増加する非負値可測単関数列{fₙ}が各点収束するとき,{fₙ}はA上で項別積分可能です.この記事では,この「単関数列の項別積分定理」の考え方・応用・証明を解説します.
ルベーグ積分の基本

ルベーグ積分の基本性質|非負値可測関数のルベーグ積分

非負値可測関数に対してルベーグ積分の性質から,一般の可測関数のルベーグ積分でも同様の性質が成り立つことが多いです.この記事では,非負値可測関数の性質を中心に,ルベーグ積分の基本性質を証明します.