重要な確率分布 二項分布Bin(n,p)と反復試行の確率|平均・分散・母関数も計算 二項分布は高校数学で学ぶ反復試行の確率がベースになっています.そのため,この記事では,反復試行の確率の公式を証明し,二項分布を解説します.また,平均・分散・確率母関数も計算します. 2024.10.25 重要な確率分布
重要な確率分布 ベルヌーイ分布Ber(p)の期待値・分散・確率母関数を計算する 投げると表が確率1/3で出る歪んだコインを投げ,表が出たとき1点,裏が出たとき0点とすると,確率1/3で1点,確率2/3で0点となります.このコイン投げの点数のように,一定の確率で値0,1をとる確率変数が従う確率分布をベルヌーイ分布といいます. 2024.10.24 重要な確率分布
重要な確率分布 一様分布(離散型)の期待値・分散・確率母関数を計算する 普通の6面サイコロは均等な割合で1,2,3,4,5,6の目が出ます.この6面サイコロの出目のように,均等な割合で値1,2,3,……,nをとる確率変数が従う確率分布を{1,2,3,……,n}$上の離散型一様分布といいます. 2024.10.23 重要な確率分布
確率分布の性質 ガンマ分布の周辺|指数分布・χ²分布・ベータ分布との関係 ガンマ分布Ga(α,β)は「再生性」「尺度変換を施してもガンマ分布」などの性質をもち,指数分布Ex(λ)やカイ二乗分布χ²(n)の一般化とも捉えられます.さらに,X〜Ga(a,1),Y〜Ga(a,1)が独立なら,X/(X+Y)はベータ分布に従います. 2024.10.18 確率分布の性質
微分積分学 交項級数の定義と性質|正負の項が交互に並ぶ級数の収束性 級数1-(1/3)+(1/5)-(1/7)+(1/9)-……のように,正の項と負の項が交互に足されており,一定の条件を満たす級数を「交項級数」といい,交項級数は必ず収束することが知られています.この記事では,交項級数が収束することを証明します. 2024.09.14 微分積分学
線形空間の基本 生成(span)される線形部分空間|具体例から考え方を解説 線形空間V上のいくつかのベクトルv₁,v₂,……,vₙの線形結合で表されるベクトル全部の集合は線形部分空間となり,この線形部分空間を「v₁,v₂,……,vₙにより生成される部分空間」などといい,span(v₁,v₂,……,vₙ)と表します. 2024.08.07 線形空間の基本
群論の基本 部分群の定義・具体例|部分群であることの証明テンプレも紹介 部分群とは,もとの群の集合の空でない部分集合で,もとの群と同じ演算で閉じていて,群となっているもののことを言います.この記事では部分群の定義・具体例・性質を解説し,部分群であることの証明のテンプレートも説明します. 2024.06.15 群論の基本
ルベーグ空間 ルベーグ空間(Lᵖ空間)|ルベーグ積分に関するノルム・内積 測度空間Xに対して,Xでp乗可積分な関数の(商)空間をLᵖ(X)と表します.この記事ではLᵖ(X)の正確な定義を説明し,LᵖノルムによってLᵖ(X)がノルム空間・内積空間となることを解説します. 2024.06.10 ルベーグ空間
京都大学|大学院入試 2023大学院入試|京都大学 数学・数理解析専攻|基礎科目 2023年度の京都大学 理学研究科 数学・数理解析専攻の大学院入試問題の「基礎科目」の解答例です.6問出題され,全6問解答します.試験時間は3時間30分です. 2024.05.29 京都大学|大学院入試
微分積分学 1/xᵖの広義積分が収束・発散するpの条件|高次元の場合も解説 広義積分は関数の絶対値が小さいほど収束しやすく,大きいほど発散しやすくなります.1/xᵖの広義積分では「0付近での増大」と「無限遠方での減衰」が収束・発散を分けるポイントとなります. 2024.03.24 微分積分学