位相空間論 弧状連結の定義と具体例|「ひとつに繋がった集合」の考え方 位相空間X上の集合Aが「ひとまとまりになっていること」を表す概念として,「連結」「弧状連結」があります.この記事では「弧状連結」の定義を説明し,具体例を紹介しています. 2021.10.04 位相空間論
確率論 積率母関数の微分可能性|$n$次モーメントが得られることの証明 実数値確率変数Xに対して,Xの積率母関数E[exp(tX)]のn階導関数に0を代入すると,Xのn次モーメントE[Xⁿ]が得られます.この記事では,この積率母関数とモーメントの関係をルベーグの収束定理を用いて証明します. 2021.09.17 確率論
微分方程式 解が一意でない常微分方程式の具体例|なぜ解が複数存在するのか 「微分方程式に解が存在するか?解が存在すれば一意か?」を考えることはよくあり,解の存在定理はいくつも知られています.この記事では,基本的な解の存在定理を踏まえて解が一意ではない微分方程式の具体例を紹介します. 2021.09.06 微分方程式
線形代数学 クラメールの公式|連立1次方程式の解を求める便利な定理 未知数をn個含むn本の連立1次方程式について,係数行列が正則なら行列式を用いることで解を表すことができ,この公式をクラメールの公式といいます.この公式が使えれば普通に解くよりも遥かに速く解を求めることができることもあります. 2021.08.23 線形代数学
微分方程式 Lax-Milgramの定理|偏微分方程式の弱解の存在・一意性のために 偏微分方程式の解の存在と一意性は微分方程式の分野では非常に重要な話題です.そこで,解を少し広く考えた弱解の存在と一意性を議論することがよくあり,この弱解の存在と一意性を示すために有用な定理としてLax-Milgramの定理があります. 2021.08.16 微分方程式
ルベーグ積分の基本 ルベーグ積分の基礎|リーマン積分の先へ!積分の歴史から紹介 多くの人は高校数学で初めて積分に出会い,大学の微分積分学でリーマン積分を学びます.しかし,専門的にはリーマン積分は少々扱いづらく,リーマン積分の欠点を大幅に改善したルベーグ積分があります. 2021.06.10 ルベーグ積分の基本
関数空間 ルベーグ空間(Lᵖ空間)の共役空間|リースの定理を添えて Lᵖ(p乗ルベーグ可積分の空間)はルベーグ空間とよばれます.L²はヒルベルト空間となるので,リースの表現定理からL²の共役空間(L²)*はL²と同型です.この記事では,L²以外のルベーグ空間Lᵖの共役もルベーグ空間となることを説明します. 2021.03.23 関数空間
微分積分学 上極限limsupと下極限liminfの定義・性質を例題から理解する 数列の極限は存在しないことがありますが,「上極限」と「下極限」はいつでも存在します.また,「上極限と下極限が一致すること」と「極限が存在すること」が同値であることは大切です. 2021.03.04 微分積分学
確率論 中心極限定理を実感する|二項分布でシミュレートしてみた 中心極限定理は確率論や統計学で重要な定理で,「同じことを繰り返しているとトータルで見ると正規分布の振る舞いに近付く」という内容です.この記事では,二項分布をもとに中心極限定理がどういう定理かシミュレートします. 2021.02.22 確率論
集合論 well-definedを理解する|三角比の定義から具体例に考える 数学では,定義がwell-definedであることはとても重要ですが,あまり授業で積極的に扱われることは少ないようで,曖昧な理解になってしまっている人は少なくないようです.そこで,この記事では三角比の定義を具体例としてwell-definedを説明します. 2021.01.26 集合論