ルベーグ積分の基本 ルベーグの単調収束定理の例題と証明|ルベーグ積分の重要定理 可測集合A上の広義単調増加する非負値可測単関数列{fₙ}が各点収束するとき,{fₙ}はA上で項別積分可能です.この記事では,この「単関数列の項別積分定理」の考え方・応用・証明を解説します. 2023.03.17 ルベーグ積分の基本
ルベーグ積分の基本 単関数列の項別積分定理|直感的な考え方・応用・証明を解説 可測集合A上の広義単調増加する非負値可測単関数列{fₙ}が各点収束するとき,{fₙ}はA上で項別積分可能です.この記事では,この「単関数列の項別積分定理」の考え方・応用・証明を解説します. 2023.02.20 ルベーグ積分の基本
ルベーグ積分の基本 ルベーグ積分の基本性質|非負値可測関数のルベーグ積分 非負値可測関数に対してルベーグ積分の性質から,一般の可測関数のルベーグ積分でも同様の性質が成り立つことが多いです.この記事では,非負値可測関数の性質を中心に,ルベーグ積分の基本性質を証明します. 2023.02.13 ルベーグ積分の基本
測度論 測度の単調収束定理とその応用|集合の単調増大列・単調減少列の測度 測度論において可測集合の列{Aₙ}に対して,Aₙの測度の極限を考えることはよくあります.この記事では,測度の極限に関する「測度の単調収束定理」の証明と補足をします. 2023.01.25 測度論
測度論 「ほとんど至る所」の定義・具体例・応用|測度空間の零集合 ルベーグ積分では零集合上でのみ例外であることを「ほとんど至る所で」と言います.この記事では「ほとんど至る所で」の定義と具体例を解説したのち,ほとんど至る所で等しい関数の同一視についても解説します. 2023.01.23 測度論
測度論 可測空間と測度空間|直感的な考え方で定義・具体例を解説 測度論の基本的な概念に「可測空間」「測度空間」があります.可測とは「観測できる」ということを意味しており,確率を観測する確率論や,リーマン積分の発展であるルベーグ積分論も測度論の一部です. 2022.12.31 測度論
ルベーグ積分の基本 ルベーグ積分の定義|単関数による近似を踏まえて定義する 可測単関数にルベーグ積分は簡単に定義でき,非負可測関数fは非負可測単関数列{fₙ}でしたから近似できることを踏まえて,この記事では一般の可測関数にルベーグ積分を定義します. 2022.12.24 ルベーグ積分の基本
微分方程式 停留位相法の直感的な考え方|偏微分方程式の解の時間減衰 時間発展する偏微分方程式の解の時間減衰のスピードは,解の振る舞いにおいて重要な要因となることは多いです.この記事では,時間減衰評価を求める方法である「停留位相法」を説明します. 2022.12.23 微分方程式
ルベーグ積分の基本 単関数近似定理|ルベーグ可測関数fを単関数列{fₙ}で近似する ルベーグ可測関数は単関数で近似することができ,ルベーグ積分はこの事実をもとに定義されます.この記事では,ルベーグ積分の定義のために「可測関数の単関数近似定理」を説明します. 2022.11.11 ルベーグ積分の基本
ルベーグ積分の基本 単関数の定義と可測性|ルベーグ積分の基礎を具体例から解説 ルベーグ可測関数のルベーグ積分の考え方を理解する前に,先に「単関数」と呼ばれる関数のルベーグ積分を考えておくと見通しが良くなります.この記事では,具体例を踏まえて可測単関数のルベーグ積分を説明します. 2022.10.24 ルベーグ積分の基本