解析学

ルベーグ空間

ヘルダーの不等式の証明・応用|ルベーグ積分の基本不等式

ルベーグ積分(測度論)を扱う分野では「ヘルダーの不等式」は基本的な不等式のひとつとして重要です.この記事では,ヘルダーの不等式の証明と,ヘルダーの不等式の応用(双対性)を説明します.
ルベーグ空間

本質的有界な関数のルベーグ空間L^∞|ノルム空間として定義

(適切な同一視のもとで)本質的有界な可測関数全部の集合L^∞はバナッハ空間(完備なノルム空間)となります.この空間L^∞を「ルベーグ空間」と言います.
ルベーグ空間

本質的有界な可測関数|本質的上限(ess sup)・下限(ess inf)

関数の上限は1点の値を変えることでどこまでも大きくすることができますが,そのような上限は本質的な上限とは言い難いですね.この記事では本質的上限と本質的下限の定義・具体例・性質を説明します.
複素解析

ディリクレ積分を複素積分で計算する|sin(x)/xの広義積分

0≦xでのsin(x)/xの広義リーマン積分を「ディリクレ積分」といいます.この記事では,ディリクレ積分を複素積分に持ち込み,コーシーの積分定理を用いることにより,ディリクレ積分がπ/2に収束することを示します.
ルベーグ積分

ルベーグ非可測集合の具体例|「ヴィタリ集合」の定義と存在

ルベーグ可測集合はルベーグ積分においてベースとなる集合たちで,多くのℝの部分集合はルベーグ可測集合ですが,選択公理を仮定することでルベーグ可測集合でない集合の存在を証明することができます.
ルベーグ積分の基本

ルベーグ積分はリーマン積分の拡張|証明と計算の例題を解説

有界閉区間上の有界関数fがリーマン積分可能なら,fはルベーグ積分可能であり,リーマン積分とルベーグ積分が等しいことが証明できます.また,有界閉区間上でない積分にも応用できることがあります.
ルベーグ積分の基本

ルベーグの優収束定理の3つのポイント|定理の証明と具体例

ルベーグ積分は極限と相性が良く,その中でも積分と極限が順序交換であることを保証する「ルベーグの優収束定理」は非常に便利で広く用いられます.この記事ではルベーグの優収束定理の使い方を例題をもとに解説し,定理の証明をします.
ルベーグ積分の基本

ファトゥの補題の使い方を例題から解説|ルベーグ積分と下極限

下極限とルベーグ積分の交換に関する定理として「ファトゥの補題」があります.ファトゥの補題は極限の発散の証明に便利であったり,ルベーグの収束定理を証明する際に鍵となる定理です.
ルベーグ積分の基本

ルベーグの単調収束定理の例題と証明|ルベーグ積分の重要定理

可測集合A上の広義単調増加する非負値可測単関数列{fₙ}が各点収束するとき,{fₙ}はA上で項別積分可能です.この記事では,この「単関数列の項別積分定理」の考え方・応用・証明を解説します.
ルベーグ積分の基本

単関数列の項別積分定理|直感的な考え方・応用・証明を解説

可測集合A上の広義単調増加する非負値可測単関数列{fₙ}が各点収束するとき,{fₙ}はA上で項別積分可能です.この記事では,この「単関数列の項別積分定理」の考え方・応用・証明を解説します.